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Exact Analysis of Field-Flow Fractionation

SOWMITHRI KRISHNAMURTHY*
and R. SHANKAR SUBRAMANIAN+t

CHEMICAL ENGINEERING DEPARTMENT
CLARKSON COLLEGE OF TECHNOLOGY
POTSDAM, NEW YORK 13676

Abstract

A rigorous convective diffusion theory is formulated for the predictive
modeling of field-flow fractionation (FFF) columns used for the separation of
colloidal mixtures. The theory is developed for simulating the behavior of a
colloid introduced into fluid in time-dependent flow in a parallel plate channel
across which a transverse field is applied. The methodology of generalized
dispersion theory is used to solve the model equations. The theoretical results
show that the cross-sectional average concentration of the colloid satisfies a
dispersion equation with time-dependent coefficients. The results of this work,
in principle, are valid for all values of time since the introduction of the colloid.
It is shown that thesc results asymptotically approach those of the noncqui-
librium theory formulated by Giddings for large values of time.

Mlustrative numerical results are obtained for the case of steady laminar
flow and a uniform initial distribution. The behavior of the coefficients in the
dispersion eguation is explained on physical grounds. Of particular interest is
the fact that at large values of the transverse Peclet number P, Taylor dispersion
in the FFF column is very small. Under these conditions, axial molecular
diffusion as well as Taylor dispersion in the connecting tubing could make a sub-
stantial contribution to the axial dispersion observed in practical FFF columns.

The theoretical predictions are compared with the experimental data of
Caldwell et al. and Kesner et al. on electrical FFF columns. The comparisons
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indicate that the theory has potential in predicting the performance of such
systenis.

INTRODUCTION

Giddings (/) introduced the term ‘““field-flow fractionation” (FFF) to
describe a broad class of separation methods he and his co-workers have
pioneered in the analysis of colloidal mixtures. The basic technique con-
sists of introducing a colloidal mixture into fluid in laminar flow in a
channel. As the sample is convected downstream, a transverse field (which,
for instance, may be electrical, thermal, or gravitational) forces the dif-
ferent species to form different transverse distributions, the natures of
which depend on the field strength and the properties of each specie.
Since the velocity profile in the fluid is distributed, each specie will be
convected at a characteristic velocity with a resulting separation at a
downstream monitoring station. The actual application of the technique
with various fields has been demonstrated in numerous articles by Giddings
and co-workers (2-70). A similar concept also has been employed by Lee
et al. (/7) who used ultrafiltration in hollow fiber systems to achieve the
desired transverse distributions; they termed their technique ‘“‘single phase
chromatography.” Recently, using the concept of electrical FFF de-
monstrated by Caldwell et al. (6), Reis and Lightfoot (/2) have achieved
the separation of proteins in hollow fibers with transverse electric fields.
They suggest the alternate name ‘“‘electropolarization chromatography”
to describe their method.

The technique of field flow fractionation is proving to be not only a
powerful analytical device but also a highly useful method for the de-
termination of important physical properties of colloids as illustrated by
Giddings et al. (9, 10, 13).

A theoretical treatment of FFF was proposed by Giddings (/4) in 1968
and elaborated on by Hovingh et al. {2}, Myers et al. (5), and Giddings
et al. (15, 76) in later years. Giddings’s approach, referred to as ‘“‘non-
equilibrium theory” in view of its origin in chromatography [Giddings
(17)], employs intuitive assumptions similar to those of Taylor (/8, 19)
who studied solute dispersion in a capillary in the absence of interphase
transport or transverse fields. Taylor’s results are valid asymptotically
in the limit of large values of time since the introduction of solute into the
flow, and it will be shown here that Giddings’s results, similarly, enjoy
asymptotic validity.

The Taylor dispersion problem has been solved exactly by Gill and
Sankarasubramanian (20, 21) using generalized dispersion theory. These
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investigators showed that the average concentration distribution in such
problems satisfies a generalized dispersion equation with time-dependent
coefficients. They also showed that this model asymptotically approaches
the constant coefficient Taylor-Aris (22) dispersion model. [t is the
purpose of the present work to construct an exact mathematical descrip-
tion of unsteady convective diffusion in field flow fractionation columns
using the tools of generalized dispersion theory. The theory will be used
to identify the relevant dimensionless parameters of interest and indicate
their influence on the behavior of FFF systems. The basic methodology
will be iilustrated for the paralilel plate geometry employed by Giddings
and co-workers but would be equally applicable to other geometries such
as the circular hollow fiber systems employed by Lightfoot and co-workers.

ANALYSIS

The unsteady convective diffusion of a colloidal specie introduced
into a fluid in time-variable laminar flow in a channel formed by two
parallel plates will be analyzed. The plates are 2b units apart and are «
units wide. The coordinate system is shown in Fig. 1. A transverse field
is imposed in the y-direction, causing the colloid to migrate at a constant
velocity v in that direction. If this field is electric, the plates forming the
channel will actually be semipermeable membranes which will prevent
the colloid from leaving the channel while still permitting ions to enter and
leave freely. The electrodes would then be mounted in separate chambers
on either side of the channel (6, 7). It should be noted that thermal FFF
does not fall in the same category as the others because the equivalent
transverse migration velocity ¢ is a strong function of transverse position.
Therefore, the analysis will have to be modified appropriately in order to
be applicable to TFFF.

In the theoretical treatment here, the unsteady convective diffusion of
one colloidal specie is analyzed. To predict the concentration profiles of a
multicomponent colloidal mixture, profiles of individual species may be

e
¥ Y
L, I\ L,
T
SIDE VIEW END VIEW

FiG. 1. Coordinate system.
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obtained and superimposed if one makes the assumption that the different
species do not interact with each other. In addition, the following simplify-
ing assumptions are made about the system.

1. The aspect ratio of the system is assumed to be large; side wall
effects will be ignored. Hence the velocity and concentration fields may
be assumed to be independent of the z-coordinate.

2. The flow is fully developed and laminar. The time-variable axial
velocity is described by u = u(t, y); there are no velocity components in
the y- and z-direction.

3. The walls of the system are impermeable to the colioidal particles.

4, Adsorption of the colloid on the channel walls is assumed to be
negligible: this has been shown, in general, to be a good assumption by the
experimental work of Lee et al. (//).

5. The solute concentration is sufficiently low; therefore free convec-
tion effects may be ignored.

6. In the case of electrical field-flow fractionation:

a. The power dissipation in the channel is assumed to be negligible
so that the free convection effects due to thermal gradients can
be ignored.

b. Electroosmotic effects will be ignored.

Under these conditions the local concentration of the colloid c(t, x, y)
will satisfy the following convective diffusion equation:
dc  0c  0Oc & O
T Plar T 82

(1

The initial condition on ¢ may be written as
(0, x, ¥y = coh (x)hy(y) (2a)

Here ¢, is a reference concentration which will subsequently be related
to the total mass of the colloid introduced at the inlet.

Since the channel walls are impermeable to the colloid, and since there
is no adsorption of the colloid on these walls, the flux of the colloid across
either wall is zero and, therefore,

a
-D a—j (t, x. b) + ve(t, x, b) = 0 (2b)

2
—Dé)f)(t, X, —b) + ve(t, x, —b) = 0 (20)
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In view of the rather complex interactions between the colloidal particles
adjacent to a boundary with that boundary, Egs. (2b) and (2¢) are, in a
strict sense, only macroscopic approximations to reality. They may be
shown to follow the assumptions of no colloid loss from the system and
a constant v by suitable integration of Eq. (1).

Since the amount of colloid introduced is finite,

o, 0,y) =0 (2d)

Equations (1) and (2) can be written in dimensionless form as

0 e 20 00 [0 0 ;
o TV N+ Py = sz T a2 G

with the conditions

00, X, YY) = H{(X)H,(Y) (4a)
(;—?%(r, X, 1) =Po(r, X, 1) (4b)
%),(r, X, -1 =Pz, X, - 1) (4c)
0r,0,Y)=20 (4d)
where
0 = cleq
Ulr, ¥) = ut, y)/u,
X = Dx/bu,
Y = y/b
P = bv/D
Pe = buy/D
1 = Dit/b?
H(X) = hy(x)

Hy(Y) = hy(p)

uq is a reference velocity, & is the half-width of the channel, and D is the
diffusivity of the colloid.
Equations (3) and (4) can be solved by the generalized dispersion theory
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developed by Gill and Sankarasubramanian (20, 27). Following their
procedure, the solution for 0(z, X, Y) is written as

x 00,
0, X, ¥Y) =Y filt, V)50t (5)
o oX
where the dimensionless area average concentration 8,, is given by
1 +1
0,.(t, X) = ij 0(r, X, Y)dY 6)
Integration of Eq. (3) with respect to Y from ¥ = —1 to ¥V = +1,

followed by the use of Eqgs. (4b) and (4c), leads to the generalized disper-
sion equation for 8,,(t, X):

a0,, i a'e,
6_ ; Ki(z )aX‘ @)
where
51‘2 ] 1 .
K7 =E§—§j_lﬁ_1(r, U, YYdY (i=123..) (8)

Equation (7) may be solved for 0,(r, X) if the coefficients K(t) are
known. This requires a knowledge of the functions f(r, ¥). To find these,
Eq. (5) representing the solution will be substituted in Eq. (3). After
evaluating the mixed derivatives of the form **'6,/0t0X* in terms of
¢'0, /X' by suitable differentiation of Eq. (7), and setting the coefficients
of &0,/0X* to zero for each k, the following set of defining differential
equations for the functions fi(z, ¥) may be obtained:

ot ofe O 1 k
Do ph oI yp = S K@ (k=0,1,2,...
o T Pay = sy~ Ukt pafia = X KOfeei )

)

The initial and boundary conditions on the functions f,(z, ¥) and
(1, X) may be determined from Egs. (4) to (6). Using Egs. (6) and {4a),

+1
0,00, X) = lj 0, X, Y)Y dY
H(X)

== j_ H(Y)dY (10)
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Upon setting

£0,Y)=0 k=1273..) (1
Eq. (5) leads to
60 X, Y)
£0, Y) = 0.0, X)
_ 2Hy(1)
I HXY)dY (12)
Furthermore, from Eqs. (4b), (4¢), and (5),
o
3y (& D =P D) (13a)
%)
Zs (e, —1) = PG, - 1) (13b)
and the definition of 0,, requires
+1
j fi(t, Y)YdY = 26,4 (k=0,1,2,..)) (14)
-1
Also, from Eq. (4d)
0
57(7'"(1, ®) =0 (k=0,1,2,..) (15)

By solving the defining differential Eq. (9) along with the appropriate
initial and boundary conditions given by Eqgs. (11) to (14), the f,’s may
be determined in principle by straightforward methods and hence the
required coefficients K(r) in Eq. (7) can be calculated using Eq. (8).
Equation (7) then can be solved for 0,(r, X), and 6(z, X, Y) may be
calculated from Eq. (5).

The Functionf,

Since the defining equations for fy(t, y) are independent of the velocity
fietd, we may solve for this function immediately. The detailed solution
obtained in Ref, 23 is reported in the Appendix. The Appendix also lists
the asymptotic steady-state representation of this function, f,(c0, »),
in Eq. (A-16).
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Steady Flow

In principle, one may solve the system of equations for f,(z, Y) for
any velocity field U(z, Y). However, the details would be quite complex.
In this work the methods are illustrated for a simple but practically useful
case, namely, steady laminar flow. In this case the velocity distribution is
given by

2
an=mw=u{l—§) (16)

so that
U, MHY=UYY=1-7Y? (17

Here, the reference velocity u, has been chosen as the centerline velocity.
Using this velocity distribution, K,(z}), f,(z, Y), and K,(1) have been cal-
culated. The details are reported in the Appendix. After calculating these
functions, one may, in principle, calculate f,(z, Y), K;5(1), and so on, but
the details become intractable. Fortunately, it has been shown in earlier
applications of generalized dispersion theory (20, 21, 24) that Eq. (7)
can be truncated after the term involving K,{tr) on the right-hand side.
Such a truncation results in

20, 2, %0,
—(—3—;— = KI(T)E\; + Kz(‘t')a—xz— (18)

The validity of this truncation for this problem will be examined later.

Equation (18) can be solved along with Eqgs. (10) and (15) after using
the following transformations:

XX, 1) = X + n(7) (19a)
where

nm=ﬁmmw (19b)

and

ém=£&mw (20)
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The result is

0

m

] r o /
(z, X: P, Pe) ZZ\TZ[ B HzdeMO H(X))

— ‘o 2
“exp l:—(Xl—A,g_Xl—)j‘ dXi 2n

The Peclet number (Pe) enters the mode} only as an additive contribu-
tion of the form 1/Pe? to the dispersion coefficient K,(r) in Eq. (A-30).

Uniform Initial Distribution

The initial distribution has already been assumed to be uniform in the
z-coordinate. For the purposes of illustration, a specific initial distribu-
tion in the x- and y-coordinates has to be chosen. It will be assumed that
a colloid of mass M is introduced at x = 0 uniformly in the y-and z-coor-
dinates. This type of an initial distribution will simulate the experiments
of Caldwell et al. (6) and Kesner et al. (7) to a good approximation.

If the reference concentration ¢, is chosen as

M

0 = 332,Pe (22)
the initial distribution functions 4, and £, may be written as
hy(x) = sz”° 3(x) (23a)
hy(y)y = | (23b)
The dimensionless counterparts, therefore, are
H,(X) = o(X) (24a)
H,(Y) =1 (24b)

Fof H,(Y) given by Eq. (24b), Eq. (A~14) for 4, in the Appendix simplifies
to
| P
A, = 7% (P*a, cosh 5 sin o,)  (odd )
n (25)

1 p
=73 (2Pg,? sinh 7Cos,)  (even n)
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When Egs. (24) are introduced in Eq. (21), the solution for 0, may be
written as

| -Xx?
Om = 2\/!7'[_6 exP[ 46 :| (26)
Some Asymptotes

For large values of 7, Eq. (A-18) from the Appendix reads

2
Lt Ki(t;P) = K,(0; P) = F;(] — Pcoth P) (A-18)

For small P, Eq. (A-18) may be approximated by

2 P?
Ki(o;P) » — 3

3715 (27)

Hsieh (25) analyzed dispersion in an open channel in the absence of any
fields using generalized dispersion theory. By symmetry, the results of
this work for a parallel plate channel for P = 0 should agree with those
of Hsieh. This has been verified for all the results presented in Ref. 23.
For instance, Eq. (27) shows that as P - 0, K,(o0; P) = —2/3 which is
the expected result. For large P, Eq. (A-18) may be approximated by

2
Ki(0;P) ~ 55 (1 = P) (28)

Similarly, the following results may be derived for K,(co: P, Pe) from
Eqg. (A-31) in the Appendix. For small P,

K :P, Pe) ! + 8 + 4P 29
0P PO~ 50 + 545 T 133 (29)
and for large P,
1 8
K,(o0; P, Pe) zﬁ—e—z-FFg(Pz - 5P+ 7) 30)

Comparison with the Theory of Giddings et al.

Itis of interest to compare the results of this work with those of Giddings
et al. (/6) which have been derived using the nonequilibrium theory
proposed by Giddings (/4). This theory is asymptotically valid in the
limit of large 1.
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TABLE 1
Correspondence between the Symbols of Giddings et al. (76) and Those of This Work

Giddings et al. (16) This work
1
2 5p
1 — Y24+ K,
- { oK (c0)}
e (S P) fy(oo, ¥
R —3K,(c0)/2
—P*fy(c0, Y)
¢ Ry fol0, V)
__é K;(0)
£ 3%, (0)
2K,(00)P?
v K. %(0)
H 2bK,(00)Pe
—K.(0)

From basic definitions, the correspondence reported in Table | has been
established between the symbols used by Giddings et al. and those of this
work. It has been verified by actual comparison that the expressions
derived by Giddings et al. (/6) for the quantities in Table 1| in terms of
system variables and parameters are accurate. It should be emphasized
that the present work is more general in scope than the asymptotic non-
equilibrium theory, and is capable of predicting system behavior, in
principle, from time zero without recourse to intuitive assumptions.

RESULTS AND DISCUSSION

It is seen from the analysis that the dimensionless colloid concentration
in the channel is a function of dimensionless time t and the dimensionless
axial coordinate X it will also depend on the two characteristic pa-
rameters—transverse Peclet number P, and axial Peclet number Pe. The
dependence on Pe occurs only through an additive contribution of 1/Pe?
to the axial dispersion coefficient whereas the dependence on P is quite
complex. It is seen from Eq. (18) that the average concentration of the
colloid is convected downstream in the channel with a time-dependent
dimensionless velocity — K,(z) and spreads axially with respect to its
center of gravity with a time-dependent dimensionless dispersion co-
efficient K,(1). The behavior of these coefficients should, therefore, yield
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0.7

0.6p—

0.5p—

-K,(7)

03—

0.2

o.t =
20

0.00! 0.01 ol 1.0
7

F1G. 2. Plot of the dimensionless convective coefficient K,(z) as a function of
dimensionless time 7, from Eq. (A-17) for P == 0, 1, 3, 5, 10, and 20.

physical insight into the transport of colloid in the FFF column. With
this aim in view, Egs. (A-17), (A-18), (A-30), and (A-31) have been used
to obtain the data plotted in Figures 2, 3, 4, and 5, respectively. The data
were calculated using Double Precision Arithmetic on an IBM 360/65
(23).

Figure 2 shows the transient approach of K, to its steady-state value
for various representative values of the transverse Peclet number P. The
range of P values runs from O to 20. (It may be mentioned that for the
experiments of Kesner et al. in EFFF systems, the P values range from
0 to 12 or s0.) At time zero, the initial distribution is uniform so that the
average velocity of the colloid is equal to the average flow velocity;
therefore, — K, which is the ratio of the average velocity of the colloid to
the centerline velocity in the flow, is 2. For P = 0, the axial velocity of the
colloid remains at the same value for all time. For P # 0, as time increases,
the colloid migrates toward the boundary ¥ = | and its concentration
distribution is weighted more and more toward the slower moving region
near the upper boundary. Therefore, the average velocity of the colloid
decreases monotonically with increasing time toward its asymptotic
steady-state value. As expected, the larger the value of P, the smaller the
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axial velocity of the colloid. The figure clearly shows that the relaxation
time required for K, to reach its asymptotic steady-state representation
decreases with increasing P. In general, from physical reasons, this relaxa-
tion time can be seen to be the larger of the following two characteristic
times.

(a) The time required for the colloid to migrate from one membrane
to the other due to the field.

(b) The time required for equilibration due to Brownian motion
across the asymptotic distribution of the colloid in the Y coordinate.

In dimensionless terms, the 1 required for (a) is given by
1, ~ 2/P 31
while the 7 for (b) may be estimated roughly as
T, ~ 1/P? (32)

if the characteristic width of the asymptotic distribution is taken to be
b/P as assumed by other workers. Equation (32) represents case (b) only
when P » 1/2. When P is on the order of 1 or smaller, the colloid is
practically distributed over the entire cross section of the channel, and
hence the relaxation time for equilibration by Brownian motion would
be given by

x| (33)

5

Comparison of Egs. (31) to {33) shows that the relaxation time is governed
by criterion (a) when P > 1/2, which is the case in most FFF systems of
practical interest. Figure | shows that the relaxation time for K, for
P = lis, in fact, on the order of magnitude of the result given in Eq. (31).

Figure 3 shows the asymptotic K (c0) plotted against P along with the
approximations developed in Egs. (27) and (28) for this quantity in the
limits of small and large P. The approximations can be seen to be quite
good over a wide range of the parameter P. It should be noted here that
K (c0) is linearly related to the retention parameter R used by Giddings
as shown by Table 1.

The dimensionless axial dispersion coefficient K,(1) is a function of the
transverse Peclet number P and the axial Peclet number Pe in addition
to depending on 7. However, the dependence on Pe occurs due to the
additive contribution of axial molecular diffusion to axial dispersion.
This dependence can be isolated by simply subtracting 1/Pe? from K, so



14:10 25 January 2011

Downl oaded At:

360 KRISHNAMURTHY AND SUBRAMANIAN

0.66

RS

ol —

-K, (@)

EQUATION (A18)
0.0 — _ ___ EQUATION (27}
——— EQUATION (28)

0.00! L l ' '
[oX] 1 10 100 1000

P

F1G. 3. Plot of the dimensionless steady-state convective coefficient K,(c0) as
a function of P from the exact result (Eq. A-18), the small P approximation
(Eq. 27), and the large P approximation (Eq. 28).

that the result is only a function of 7 and P. Figure 4 shows the behavior
of K, —(1/Pe?) as a function of t for various values of P. The results for
P = 0 correspond to those of Hsieh (25) in the absence of a field. In all
cases when P # 0 (in the presence of a field), the figure shows that for
very small times the axial dispersion coefficient is practically identical to
that for the case P = 0 (no field). As time increases, axial dispersion
appears to be enhanced slightly in comparison to the case of no field and
then decreases substantially for large time, resulting in lower asymptotic
dispersion coefficients in the presence of a field. This behavior may be
explained as follows. For very small 7, the field has not had much of an
effect; therefore, the axial dispersion coefficient is nearly the same as that
in the absence of the field. As time increases, at intermediate times the
colloid migrates in the presence of the field so that it is distributed more
favorably in the large velocity gradient region near the upper boundary
but is still present in sufficient quantities all over the cross section. This
explains the increased dispersion compared to the case P = 0 because
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1072

1073

- 2
K (T)=1/Pe

10~4

10-5(— —

106 [
0.00! 0.01 [oX] |
T

FiG. 4. Plot of the dimensionless dispersion coefficient K.(t) — (1/Pe?) as a
function of dimensionless time t from Eq. (A-30) for P = 0, 5, 10, and 20.
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larger velocity gradients enhance dispersion. However, as time increases,
the colloid tends to form a distribution Aeavily weighted in the slower-
moving region near the upper boundary. The reduced transverse extcnt
of the colloid, along with the fact that the velocities are low in this region,
contributing to very small net velocity variations across the colloid dis-
tribution, results in a substantial reduction of axial dispersion. The figure
shows that the asymptotic value of the dispersion coefficient for P = 0
is more than a hundred times the value for P = 20, thus indicating a
dramatic reduction in axial dispersion for highly retained colloids. Figure
4 also shows that K, relaxes to its asymptotic steady state at earlier values
of 7 for larger P. The relaxation times are about the same as those for
K, for the same values of P and may be predicted by Eq. (31) except when
P is very small. For convenience, the dependence of the large-time asymp-
tote of K, —(1/Pe?) on P is shown in Fig. 5. Also shown in this figure are
the small and large P approximations developed in Egs. (29) and (30).

107!
O
0-3 EQUATION (A31)
[ ———— EQUATION (29)
_—— EQUATION (30}
104 L [
0.00I 0.01 ol ! °

P

F1G. 5. Plot of the steady-state dispersion coefficient K;(c0) — (1/Pe?) as a func-
tion of P from the exact result (Eq. A-31), the small P approximation (Eq. 29),
and the large P approximation (Eq. 30).
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03— —

(K (@) - 1/P8?) /7 | Ky(@) |

[

FiG. 6. Plot of the ratio of the steady-state coefficients [K,(c0) — (1/Pe?))/
|K3(o0)l as a function of P.
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It was mentioned earlier that the validity of truncating Eq. (7) for
i > 2 would be examined for this work. One way of establishing this is
to demonstrate that K;(7) « K,(r). The evaluation of the coefficient
K;(7) involves the use of the function f,(r, Y), which is extremely difficult
to obtain. However, Eqgs. (8) and (11) show that K, and all the higher co-
efficients are zero at time zero while K, = 1/Pe?. Therefore, for small
times it probably is reasonable to perform the truncation involved. In view
of the complexity of the task, only K;(o0) was examined in this work.
A numerical scheme was used to calculate f,(o0, Y), and K;(c0) was ob-
tained by using Simpson’s rule for the integration required in Eq. (8).
Figure 6 shows a plot of the ratio [K, () —(1/Pe?)]/|K5(c0)] as a function
of P. The figure shows this ratio to reach a minimum of 50 around P =~ 5.
This ratio still is comfortably large to justify the truncation. However,
this supportive evidence for the truncation should be interpreted with
caution since the derivative 8°0,,/0X> can be much larger than 8%0,/0X>
at very small values of t. The best test of the truncated model for 8,
will, of course, be comparison with suitable experimental data.

Comparison with Asymptotic Theory

As pointed out before, earlier mathematical modeling efforts in FFF
have been confined to the analysis of asymptotic large © behavior. That
1s, in effect, the average concentration distribution is assumed to satisfy
the model

a0, o8, 0%,
5~ Ki(eo) 55 = Ko(0) 357 (34)

The solution of this equation (with the same initial and boundary con-

ditions imposed on the exact model for 6,) may be written as

i [(X + Kl(w)r)z]
2 /K0y P | T4k, (o)

Comparison with the exact solution from Eq. (26) shows that the ap-
proximations being made are

n(z) =~ K, (o)t (36)
$(r) = Ky(wo)t 37

0.1, X) = (35)

The percentage error made in using Eq. (36), that is, {[K (c0)t — n{z))/
n(7)} x 100, is plotted as a function of 7 in Fig. 7 for various values of P.
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Fi1G. 7. Plot of the percentage error in approximating [ K,(z) dr by K(0)7 as
a function of dimensionless time 7 for P = 0, 2, 5, and 10.
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FIG. 8. Plot of the percentage error in approximating [§ K.(t) dr by K,(o0)rasa
function of dimensionless time 7 for P = 0, 2, 5, and 10; Pe = co.

365



14:10 25 January 2011

Downl oaded At:

366 KRISHNAMURTHY AND SUBRAMANIAN

The figure reveals that this approximation gets progressively worse as P
increases in spite of the fact that relaxation times are smaller for larger P.
This is clearly because of the smaller asymptotic values reached by K,
for larger P.

Figure 8 shows plots of [K,(o0)r — &(1)]/&(z) x 100 as a function of
P when axial molecular diffusion is ignored. Since the axial dispersion
coefficient, in this case, starts from a value of 0 at time 0, increases for a
while, and then decreases to the asymptotic value, the behavior of this
error is more complex. It is important to note that, in general, the errors
are much larger in approximating K,(r) with the asymptotic value than
in the case of K.

Figure 9 shows breakthrough (or elution) curves at X = 1 for Pe = 1000
for two different values of P (5 and 15) calculated from the exact solution
with the time variable K| and K, and the asymptotic model which uses
K, (o) and K,(c0). It is clear from the figure that even at values of 7 on
the order of 10, which are far beyond the relaxation times involved, the

I I | |
EXACT SOLUTION
€ ———- ASYMPTOTIC SOLUTION
< -
- 8.0— Pe=1000 _
z X=1
=
<
[+ 4
[
Z
w
O 6.0r— ]
b4
[o]
(&]
P-4
<
w
=
9 a0 |
w
-
Z
3 /T\P=5
2 \
=
Z 20— .
\
N
o ] |

1
| 2 3 4 S 6
DIMENSIONLESS TIME, T

Fi1G. 9. Breakthrough curves from the exact solution (Eq. 26) and the asymptotic
solution (Eq. 35) for P = 5 and 15.
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asymptotic model is quite inadequate in describing the concentration
distribution. Krishnamurthy (23) shows that one needs to go to much
farther axial stations (X = 5) in order to adequately represent the con-
centration distributions using the asymptotic result from Eq. (35) for such
P values.

Height Equivalent of a Theoretical Plate

A popular concept in chromatography is the “height equivalent of a
theoretical plate,” H. Giddings (/7) has shown how this concept, while
it has no association with reality, can still be useful as a measure of axial
spreading in chromatographic columns. Using his definition and the
asymptotic results from his theory, he has obtained expressions for this
quantity in FFF systems. A may be defined in terms of the variance of the
solute distribution and the length of the column as

H =L (38)

100

T ] I

Pe=1000

H’

o

DIMENSIONLESS HETP ,

0.1 L L |
0.04 [¢N] j i0 100

DIMENSIONLESS TIME |, T

F1G. 10. Plot of the dimensionless height equivalent of a theoretical plate H’ as
a function of dimensionless time 7 for P = 0, 5, and 10.
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From Egs. (19b), (20), and (26), a dimensionless form of H can be shown
to be given by

H' = H[2b = {Pe/(—n) (39)

It should be noted that this quantity is a function of time, and it un-
dergoes relaxation to its asymptotic value for large 7. The behavior of H’
as a function of time 7 is illustrated in Fig. 10 for representative values of
the parameter P. It is clear from the figure that using asymptotic results
for H' can lead to large errors in predicting system performance under
certain conditions.

Comparison of Theory with Experiments

A substantial amount of experimental data is available on FFF systems
in the literature in the form of retention volumes or R values, plate heights,
and elution curves from FFF columns (2-10). Typically, these columns
are long enough so that the time period between introduction and elution
of the colloid is on the order of magnitude of the relaxation time for the
system, or larger. Under these conditions, Giddings and co-workers show,
in the above references, that the asymptotic nonequilibrium theory
predicts retention data quite well (in electrical FFF columns where
deviations have been observed, they have offered possible explanations).
The theory usually underpredicts axial dispersion data reported in the
form of plate heights, and explanations have been presented to account
for the observed disagreement between theory and experiment. It is clear
that for large enough values of time, the predictions of the present theory
would completely agree with those of the nonequilibrium theory. There-
fore, a precise test of the present theory has to await the availability of
calibrated elution curves in systems where the time interval between in-
jection and elution is suitably small. In this work a comparison of the
predictions of our theory will be made with the experimental elution
curves from Caldwell et al. (6) and Kesner et al. (7) obtained from parallel
membrane electrical FFF systems. For the reasons described below, these
comparisons can only be semiquantitative in nature. The data available
are in the form of UV-recorder responses as a function of time at the sys-
tem exit. Calibration information is not available, but the response of the
recorder may be assumed to be linear in protein concentration in the
range of concentrations involved so that a comparison can be made by
matching the peak heights in the breakthrough curves on an individual
basis for each protein. Also, Figs. 7 and 8 in Kesner et al. (7) show that
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under identical operating conditions, proteins such as albumin and
hemoglobin arrive at quite different times at the system exit depending on
whether y-globulin is present or not. This suggests colloidal interactions or
variations in operating parameters that were undetectable. Hence the
comparisons to be made here can only be indicative of trends and cannot
be interpreted precisely. Furthermore, Kesner et al. observed that the peak
arrival times from their experimental data matched theoretical predictions
made from nonequilibrium theory (with the aid of literature data on the
physical and electrical properties of the proteins) only for their runs at
a pH = 8.0. For experiments at a pH = 4.5, they observed substantial
deviations for which they offer some possible explanations. In any case,
we estimated P values for comparison at a pH of 8.0 from literature data
Jor electrophoretic mobilities and diffusivities for the various proteins com-
piled in Kesner’s thesis (26). The resulting comparison is shown in Fig. 11
for the separation of y-globulin and albumin. Figures 12 and 13 show com-
parisons of theory with experiment for some more protein separations,
this time at a pH of 4.5. The theoretical results for these comparisons were
calculated using a P estimated from the experimental data points in the
I/w vs 1/E plots of Kesner et al. In all three figures the slight deviations in
matching the peak arrival times may be attributed to:

(a) The fact that the predictions are based on the exact theory whereas
the P values were estimated from the //w vs 1/F data in which the ordinate
had been calculated using the asymptotic nonequilibrium theory.

(b) The possible errors we made in reading the data for P off the
graphs of Kesner et al.

Considering the restrictions mentioned earlier, the theory makes
reasonable predictions of the axial dispersion observed in the experiments,
especially at small P. At larger P values the experimental dispersion is
much larger than that predicted by theory. It is possible that this trend
of larger deviations at larger P could be the result of the various simplify-
ing assumptions made in developing the theory. However, one possible
explanation could be that the observed experimental dispersion is caused
by additional Taylor dispersion in the connecting tubing from the injection
station to the channel inlet, and in the tubing from the channel exit to
the UV-recorder. Since, for large P, axial dispersion in the FFF column
itself is substantially reduced (by a factor of approximately 20 for P = 10
when compared with P = 0), Taylor dispersion in the connecting tubing,
where there is no applied field, would take on an increased importance.
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F1G. 11. Breakthrough curves from present solution (Eq. 26) and experimental
results of Caldwell et al. (6) for y-globulin and albumin.

In other words, a short length of such tubing which causes very little ad-
ditional dispersion in chromatographic systems could possibly play an
overriding role in determining the extent of peak spreading in an FFF
column. Of course, even with accurate data on the length and diameter
of this tubing, it would be very difficult to make a proper estimate of its
contribution because of the changes in geometry. One way of testing the
conjecture made here is to compare peak spreading in the case of a run
with a high value of P [such as the one for y-globulin in Fig. 8 of Kesner
et al. (7)] using different sizes of connecting tubing.
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Fi1G. 12. Breakthrough curves from the present solution (Eq. 26) and the experi-
mental results of Kesner et al. (7) for albumin, hemoglobin, and y-globulin.
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Fi1G. 13. Breakthrough curves from the present solution (Eq. 26) and the experi-
mental results of Kesner et al. (7) for albumin and hemoglobin.
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Other explanations for the large observed dispersion could be side wall
effects, or successive disturbances which would cause the colloidal dis-
tributions to undergo relaxations—as noted in this work, the axial disper-
sion coefficient is usually much larger during the relaxation stage than
in the asymptotic stage.

Finally, it should be reemphasized that the above comparisons are not
to be interpreted as precise tests of the theory. Such testing must await
the availability of more quantitative experimental data on FFF systems
in the region of time where the coefficients X, and K, exhibit transient
behavior.

CONCLUSIONS

The unsteady transport of a colloid introduced into a fluid in time-
dependent flow in a parallel plate channel in the presence of a transverse
field has been analyzed using generalized dispersion theory. The present
treatment provides a rigorous unified theoretical foundation for the
modeling of field-flow fractionation (FFF) devices.

The results from the theory show that the dimensionless average con-
centration of the colloid depends on dimensionless time and axial position;
it also depends parametrically on the transverse Peclet number P and the
axial Peclet number Pe,

For large values of time, the results of the present work have been shown
to approach those of the nonequilibrium theory of Giddings asymp-
totically. In the case of steady laminar flow and a uniform initial distribu-
tion, numerical results show that the errors involved in using the asymp-
totic theory increase substantially with increasing P. An attempt has been
made to compare the theoretical predictions with the data of Giddings
and co-workers on electrical FFF columns. The comparisons show the
theory to be reasonably successful in predicting observed axial dispersion
for small P. In view of the extremely small dispersion predicted by the
theory for FFF at large P, it is conjectured that one possible reason for the
observed large dispersion in the experiments could be the effect of con-
necting tubing used between the injection port and the channel inlet and
between the channel exit and the UV-monitoring device.

The methodology of generalized dispersion theory which has been used
in this work is quite general, and can be used equally well to predict the
performance of systems with other geometries such as the hollow fiber
device of Reis and Lightfoot (12).
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APPENDIX

The details of the various solutions for the functions f, and f, and the
results for the coefficients K, and X, are presented here.

The Function f(z, )

By setting k = 0 in Egs. (9), (13), and (14), and using Eq. (12), the fol-
lowing defining equations may be obtained for fy(r, Y):

.

=Py = (A-D
2H,(Y)
o0, Y) = W (A-2)
T e 1) = Pfate ) (A-3)
a@( 1) = Bfite, = 1) (A4)
J‘* Sor, YYdY =2 (A-5)
-1

It may be observed that the function fy(z, ¥) is independent of the
velocity field and, therefore, Eqgs. (A~1) to (A-5) may be solved immediately
by the method of separation of variables. The result is

folr, ¥) = ZO A, exp (—2,21) ¢(Y) (A-6)
where
PZ

=t o (A-7)

PZ
a? = - (A-8)

2.2
%2 =’14i (n=123..) (A-9)

and the eigenfunctions ¢,(Y) are given by
¢ Y) = V2 (cos o, Y + G, sina,Y) (A-10)
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Here
2
G, =% (oddn)
(A-11)
- r
= 3y (even n)

It should be noted that, when » = 0, Eq. (A-10) may be conveniently
rewritten as

do(Y) = ¥ (A-12)
The expansion coefficients A, are obtained using the orthogonality pro-
perty of the set of eigenfunctions ¢,. This set appears to be complete even
though the Sturm-Liouville system for ¢, is not proper in view of Eg.
(A-3).
[ A0, Ng(Y) dY
" Zir(Y)g, (Y)dY
where the weighting factor is 7(Y) = e~F¥. From Egs. (A-2) and (A-12),

_ 2 (X H (Ve ™ g (V) dY
"TETH,(NdY [Tle T AY)dY

A

(n=0,1,2,..) (A-13)

A

(A-14)

It may be noted that A4, is independent of the initial distribution and is
given by
P

Ao = sinh P (A-19)

Asymptotically as 1 — o0, fo(1, ¥) approaches a steady-state distribution
given by

P
foleo, ¥) = o= &Y (A-16)

The Coefficient K, (1)

For steady laminar flow, the parabolic velocity profile is given by Eq.
(17). Using this velocity field, K,(r) may be calculated immediately from
Eq. (8) as

+1
K@= 3| (- e nay

= Ky(0) —3 ¥ Ayexp (=410 C, (A-17)

o=
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where
2
K{0) = Lt K(7) = I')‘f(l — Pcoth P) {A-18)

and

1 P 4P P
C, = ——3[—4/1,, cosh = + —sinh 5j| cos a,, (even n)

A 2 A, (A-19)
-1
_ 11 8, hP 8, A, . hP ) dd
=73 7, coshz p_ sinhyg |sina, (odd n)

The coefficient K,(7) represents the negative of the dimensionless velocity
of the solute distribution. It is seen from Eq. (A-17) that K, depends on t
even though the velocity field may be steady.

Solution for f,(z, Y) and K,(1)

Setting k = 1| in Eq. (9) gives

of | Lo _ 9

5 T Pay =y — UG ) + K@t ¥)  (A-20)

This is to be solved with the conditions

10, VY=0 (A-21)
af;( 1) = Pfi(z, 1) (A-22)
f‘( ~1) = Pfi(z, = 1) (A-23)

0Y 1 )
jﬂ fi(r, Y)dY =0 (A-24)

The solution procedure, using Duhamel’s theorem, is reported elsewhere
(23). The final result for f,(z, Y) is

[ Y) =fi(w, ¥) + i Su(D)b,(Y) (A-25)

where
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fl(w’ Y)
] 2 3 Py’ 202
= PP anhi P P[{[l - 1;c:oth P:|P Y - 3t P'Y

PZ
- |:<? — PcothP — 1>2P coshP + (P? + 4)sinh P + PQ]}ePY

+ Qsinh P] (A-26)
Q = —2P(1 + coth P)e™* (A-27)

and

PC,
Sn(r) = —[An(l + Kl(OO))T - (/‘L 2 sinh P(ln + G 2)>] eXp (_/1"21.)
exp (—4,21) — exp[— (/12+/12)1:]

1
b A
+ ZA,,MZ:1 m 77 C.
m# 1
2 exp (—4,,°1t) — exp (—4,%7)
m n A_28
(1 + G 2) Z And |: FIE ) ( )
where C, is defined by Eq. (A-19) and
n G 2
mn_(l_GZ)( ])+(1+6n) m=n
—l (m+n)/2
- -Ge) [
(m + n)? n_4_ m odd
and n odd
(_ ])(m—n)/Z or
+ (1 + G,G) —————2 — m even
(m —n)"— and n even
(= Dimtr D2 m odd mr
= (GG, = V| 5
mes 37 } and n even
(m + ) 8 or
(_ l)(n—mAI)/2 m even
- (GnGm + l) ——‘7__[3_ and n Odd
(n—my <

(A-29)
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where G, is defined by Eqs. (A-11). From Eqgs. (8), (17), and (A-25),

l 1 +1
K =g =z (= TG DAY

-1
0

= Ky(0) - 5 3, S.(0C, (A-30)

where

1 4 2p? 10coshP 14 sinh P
Ka(0) = Lt K1) = 2 + poginp P|:3 snhP P T P2
2 2PcoshP 4cosh?P .
SnhP ~ snh?’P  sinhP T sinh P:l
(A-31)

SYMBOLS

a channel breadth
A, expansion coefficients defined in Eq. (A-14)
b channel half-width
¢ local concentration
Co reference concentration defined in Eq. (22)
C, coefficients defined in Eq. (A-19)
D diffusivity
constants defined by Eq. (A-29)
fi coefficient functions in Eq. (9)
G, coefficients defined in Eq. (A-11)
dimensionless coefficients defined in Eq. (8)
M total mass of colloid released
P transverse Peclet number; P = bv/D
Pe axial Peclet number; Pe = buy/D
0 coefficient defined in Eq. (A-27)
S, coefficient functions defined in Eq. (A-28)
t time
U dimensionless flow velocity; U = u/u,
u flow velocity in the x-direction
Ug reference velocity; also the velocity at the centerline of the channel
v transverse velocity of a colloidal specie
X dimensionless axial coordinate, X = xD/b%u,
X, defined by Eq. (19a)
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axial coordinate

dimensionless transverse coordinate; ¥ = y/b
transverse coordinate; see Fig. 1

transverse coordinate; see Fig. 1

(S A

Greek Letters

o, eigenvalues defined in Egs. (A-8) and (A-9)
Dirac delta function
Gyj Kronecker delta
4 defined by Eq. (20)
n defined by Eq. (19b)
g dimensionless local concentration
0, dimensionless mean concentration
An defined by Eq. (A-7)
T constant; 7 = 3.14159 . ..
7 dimensionless time; T = Dt/b?
o, eigenfunctions defined in Eq. (A-10)
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Note Added in Proof. A theoretical analysis of the hollow fiber systems used in Ref.
11 may be found in Ref. 27. While the present article was in press, a similar devel-
opment was reported in Ref. 28 in the context of ultrafiltration-induced polarization
chromatography.
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