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Exact Analysis of Field-Flow Fractionation 

SOW M ITH RI KRISHNAM URTHY'" 
and R .  SHANKAR SUBRAMANIAN? 
CHEMICAL LNGlNEERlNG DEPARTMENT 

CLARKSON COLLtGE OF TECHNOLOGY 

POTSDAM, NEW YORK 13676 

Abstract 

A rigorous convectivc diffusion theory is formulated for the predictive 
modeling of field-flow fractionation (FFF) columns used for the separation of 
colloidal mixtures. The  thcory is developcd for simulating the behavior of a 
colloid introduced into fluid in time-dependent flow in a parallel plate channel 
across which a transverse field is applied. The methodology of generalized 
dispersion theory is used to  solve thc model equations. The theoretical results 
show that the cross-sectional average concentration of the colloid satisfies a 
dispersion equation with time-dependent coeficients. The rcsults of this work, 
in principle, a re  valid for all values of time since the introduction of thc colloid. 
It is shown that these results asymptotically approach those of the noncqui- 
librium theory formulated by Giddings for large values of time. 

Illustrative numerical results a re  obtained for the case of steady laminar 
flow and a uniform initial distribution. The behavior of the coefficients in the 
dispersion equation is explained on  physical grounds. Of particular interest is 
the fact that at large values of the transverse Peclet number P, Taylor dispcrsion 
in the FFF column is very small. Under these conditions, axial molccular 
diffusion as well as Taylor dispersion in the connecting tubing could make a sub- 
stantial contribution to the axial dispersion observed in practical FFF columns. 

The  theoretical predictions a re  compared with the experimental data of 
Caldwell et al. and Kesner et al. on electrical FFF columns. The comparisons 
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348 KRISHNAMURTHY A N D  SUBRAMANIAN 

indicate that the theory has potential in predicting the performance of such 
systems. 

INTRODUCTION 

Giddings ( I )  introduced the term “field-flow fractionation” (FFF) to 
describe a broad class of separation methods he and his co-workers have 
pioneered in the analysis of colloidal mixtures. The basic technique con- 
sists of introducing a colloidal mixture into fluid in laminar flow in a 
channel. As the sample is convected downstream, a transverse field (which, 
for instance, may be electrical, thermal, o r  gravitational) forces the dif- 
ferent species to form different transverse distributions, the natures of 
which depend on the field strength and the properties of each specie. 
Since the velocity profile in the fluid is distributed, each specie will be 
convected at  a characteristic velocity with a resulting separation at a 
downstream monitoring station. The actual application of the technique 
with various fields has been demonstrated in numerous articles by Giddings 
and co-workers (2-10). A similar concept also has been employed by Lee 
et al. (11) who used ultrafiltration in  hollow fiber systems to achieve the 
desired transverse distributions; they termed their technique “single phase 
chromatography.“ Recently, using the concept of electrical FFF de- 
monstrated by Caldwell et al. (6),  Reis and Lightfoot (12) have achieved 
the separation of proteins in hollow fibers with transverse electric fields. 
They suggest the alternate name “electropolarization chromatography” 
to  describe their method. 

The technique of field flow fractionation is proving to be not only a 
powerful analytical device but also a highly useful method for the de- 
termination of important physical properties of colloids as illustrated by 
Giddings et al. (9, 10, 13). 

A theoretical treatment of FFF was proposed by Giddings (14 )  in 1968 
and elaborated on by Hovingh et a]. (21, Myers et al. (51, and Giddings 
et al. (15, 16) in later years. Giddings’s approach, referred to  as “non- 
equilibrium theory” in view of its origin in chromatography [Giddings 
(17)],  employs intuitive assumptions similar to those of Taylor (18, 29) 
who studied solute dispersion in a capillary in the absence of interphase 
transport or transverse fields. Taylor’s results are valid asymptotically 
in the limit of large values of time since the introduction of solute into the 
flow, and it will be shown here that Giddings’s results, similarly, enjoy 
asymptotic validity. 

The Taylor dispersion problem has been solved exactly by Gill and 
Sankarasubramanian (20,21) using generalized dispersion theory. These 
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EXACT ANALYSIS OF FIELD-FLOW FRACTIONATION 349 

investigators showed that the average concentration distribution in  such 
problems satisfies a generalized dispersion equation with time-dependent 
coeflicients. They also showed that this model asymptotically approaches 
the constant coefficient Taylor-Aris (22) dispersion model. It is the 
purpose of the present work to construct an exact mathematical descrip- 
tion of unsteady convective diffusion in field flow fractionation columns 
using the tools of generalized dispersion theory. The theory will be used 
to identify the relevant dimensionless parameters of interest and indicate 
their influence on the behavior of FFF systems. The basic methodology 
will be iilustrated for the parallel plate geometry employed by Giddings 
and co-workers but would be equally applicable to other geometries such 
as the circular hollow fiber systems employed by Lightfoot and co-workers. 

ANALYSIS 

The unsteady convective diffusion of a colloidal specie introduced 
into a fluid in time-variable laminar flow in a channel formed by two 
parallel plates will be analyzed. The plates are 26 units apart and are u 
units wide. The coordinate system is shown in Fig. 1 .  A transverse field 
is imposed in  the j.-direction, causing the colloid to migrate at a constant 
velocity I :  in that direction. If this field is electric, the plates forming the 
channel will actually be semipermeable membranes which will prevent 
the colloid from leaving the channel while still permitting ions to enter and 
leave freely. The electrodes would then be mounted in separate chambers 
on either side of the channel (6,  7). It should be noted that thermal FFF 
does not fall in the same category as the others because the equivalent 
transverse migration velocity r is a strong function of transverse position. 
Therefore, the analysis will have to be modified appropriately in order to 
be applicable to TFFF .  

111 the theoretical treatment here, the unsteady convective diffusion of 
one colloidal specie is analyzed. To predict the concentration proliles of a 
multicomponent colloidal mixture, profiles of individual species may be 

S I D E  V I E W  E N D  V I E W  

FIG. I .  Coordinate system. 
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350 KRISHNAMURTHY A N D  SUBRAMANIAN 

obtained and superimposed if one makes the assumption that the different 
species d o  not interact with each other. In  addition, the following simplify- 
ing assumptions are made about the system. 

1 .  The aspect ratio of the system is assumed to be large; side wall 
effects will be ignored. Hence the velocity and concentration fields may 
be assumed to be independent of the :-coordinate. 

The flow is fully developed and laminar. The time-variable axial 
velocity is described by LI = ~ ( t ,  ,I*); there are no velocity components i n  
the J S -  and :-direction. 

The walls of  the system are impermeable to the colloidal particles. 
Adsorption of the colloid on the channel walls is assumed to be 

negligible: this has been shown, in general, to be a good assumption by the 
experimental work of Lee et al. ( I / ) .  

The solute concentration is sufficiently low; therefore free convec- 
tion effects may be ignored. 

In the case of  electrical field-flow fractionation: 
a. 

2. 

3. 
4. 

5 .  

6 .  
The power dissipation in the channel is assumed to be negligible 
so that the free convection effects due to thermal gradients can 
be ignored. 
Electroosmotic effects will be ignored. b. 

Under these conditions the local concentration of the colloid c( t ,  x, 1%) 
will satisfy the following convective diffusion equation : 

The initial condition on c may be written as 

Here cu is a reference concentration which will subsequently be related 
to the total mass of the colloid introduced at  the inlet. 

Since the channel walls are impermeable to the colloid, and since there 
is no adsorption of the colloid on these walls, the flux of the colloid across 
either wall is zero and, therefore, 
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EXACT ANALYSIS OF FIELD-FLOW FRACTIONATION 35 I 

i n  view of the rather complex interactions between the colloidal particles 
adjacent to a boundary with that boundary, Eqs. (2b) and (2c) are, in a 
strict sense, only macroscopic approximations to reality. They may be 
shown to follow the assumptions of no colloid loss from the system and 
a constant u by suitable integration of Eq. ( I ) .  

Since the amount of colloid introduced is finite, 

“ ( t ,  m , y )  = 0 (2d) 

Equations ( I )  and (2) can be written in dimensionless form as 

[ I f720 
au ao 
- + U(T,  Y ) -  + P -  = - - 
d T  3~ P e 2 d X z + P  (3) 

where 

0 = c/co 

U(T, y> = u(t ,  y)/uo 

X = D.x/b2uo 

Y = Y / b  

P = b v / D  

Pe = b u o / D  

T = Dt/b2  

H , ( X )  = h,(.Y) 

H A Y )  = h ( Y )  

uo is a reference velocity, b is the half-width of the channel, and D is the 
diffusivity of the colloid. 

Equations (3) and (4) can be solved by the generalized dispersion theory 
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352 KRlSH N A M  URTHY A N D  SUBRAMANIAN 

developed by Gill and Sankarasubramanian (20, 21). Foilowing their 
procedure, the solution for U(T, X, Y )  is written as 

where the dimensionless area average concentration 0, is given by 

Onl(Tr x) = - o ( T ,  X, Y )  dY 
2 5" - I  

Integration of Eq. (3) with respect t o  Y from Y = - 1 t o  Y = + 1 ,  
followed by the use of Eqs. (4b) and (4c), leads to the generalized disper- 
sion equation for O,,,(T, X): 

where 

+ 1  ' 1 f i - l ( T ,  Y ) ( i ( r ,  Y )  d Y  (i = 1, 2 ,  3, . . .) (8) 
6i I  K,(r )  = 7 - - Pe 2 

Equation (7)  may be solved for Offl(5, X) if the coefficients K,(r) are 
known. This requires a knowledge of the functionsf,(s, Y ) .  To find these, 
Eq. (5) representing the solution will be substituted in Eq. (3). After 
evaluating the mixed derivatives of the form dkt lO, , /d~aXk in terms of 
C?'U,/C'X~ by suitable differentiation of Eq. ( 7 ) ,  and setting the coefficients 
of L7kU,,,/G?Xh to zero for each k ,  the following set of defining differential 
equations for the functions,f,(s, Y )  may be obtained: 

(9) 

The initial and boundary conditions on the functions A(T, Y )  and 
Of,,(7, X) may be determined from Eqs. (4) to (6). Using Eqs. (6) and (4a), 
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EXACT ANALYSIS OF FIELD-FLOW FRACTIONATION 

Upon setting 

h(0 ,  Y) = 0 (k = 1,2 ,  3, . . .) 
Eq. (5) leads to  

Furthermore, from Eqs. (4b), (4c), and (5 ) ,  

and the definition of 0, requires 

+ I  5 &(z, Y )  d Y  = 26,, (k = 0, I ,  2, . . .) (14) 
- I  

Also, from Eq. (4d) 

By solving the defining differential Eq. (9) along with the appropriate 
initial and boundary conditions given by Eqs. (1 I )  to (14), the f k ' s  may 
be determined in principle by straightforward methods and hence the 
required coefficients K,(T) in Eq. (7) can be calculated using Eq. (8). 
Equation (7) then can be solved for O,,,(T, X), and O ( T ,  X, Y )  may be 
calculated from Eq. (5). 

The Function f,, 

Since the defining equations for f o ( r ,  y )  are independent of the velocity 
field, we may solve for this function immediately. The detailed solution 
obtained in Ref. 23 is reported in the Appendix. The Appendix also lists 
the asymptotic steady-state representation of this function, f0(m, y ) ,  
in Eq. (A-16). 
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354 KRISHNAMURTHY AND SUBRAMANIAN 

Steady Flow 

In principle, one may solve the system of equations for ,&(T, Y )  for 
any velocity field U(T ,  Y ) .  However, the details would be quite complex. 
In this work the methods are illustrated for a simple but practically useful 
case, namely, steady laminar flow. In this case the velocity distribution is 
given by 

so that 

u(T, Y )  = u(Y) = 1 - Y 2  (17) 

Here, the reference velocity uo has been chosen as the centerline velocity. 
Using this velocity distribution, K, ( z ) ,  f,(~, Y ) ,  and K,(T) have been cal- 
culated. The details are reported in the Appendix. After calculating these 
functions, one may, in principle, calculate,f,(r, Y ) ,  K 3 ( t ) ,  and so on, but 
the details become intractable. Fortunately, it has been shown in earlier 
applications of generalized dispersion theory (20, 21, 24) that Eq. (7) 
can be truncated after the term involving K 2 ( ~ )  on the right-hand side. 
Such a truncation results in 

The validity of this truncation for this problem will be examined later. 
Equation (18) can be solved along with Eqs. (10) and (15) after using 

the following transformations: 

where 

r r  

and 
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EXACT ANALYSIS OF FIELD-FLOW FRACTIONATION 355 

The result is 

OJ7, X ;  P, Pe) = - I [ [‘I W W ]  H , ( x ; )  
4,775 , - I  

The Peclet number (Pe) enters the model only as an additive contribu- 
tion of the form l/PeZ to the dispersion coefficient K2(7)  in Eq. (A-30). 

Uniform Initial Distribution 

The initial distribution has already been assumed to be uniform in the 
:-coordinate. For the purposes of illustration, a specific initial distribu- 
tion in the x- and y-coordinates has to  be chosen. I t  will be assumed that 
a colloid of mass A4 is introduced at  .Y = 0 uniformly in the y-and z-coor- 
dinates. This type of an initial distribution will simulate the experiments 
of Caldwell et al. (6) and Kesner et al. (7) to a good approximation. 

If the reference concentration co is chosen as 

the initial distribution functions h ,  and h,  may be written as 

bzuo , 
/II(X) = - h ( x )  D (23a) 

/1 , (4 ’ )  = I (23b) 

The dimensionless counterparts, therefore, are 

H , ( X )  = h ( X )  (24a) 

H , ( Y )  = 1 ( 2 4 ~  

Fof H,( Y )  given by Eq. (24b), Eq. (A-14) for A ,  in the Appendix simplifies 
to 

I P .  A,, = 7 (P’a,, cosh - sin a,) 

1 P 

(odd n )  
An 2 

43 2 = 7 (2Pan2 sinh - cos m,,) (even n)  
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35b KRISHNAMURTHY AND SUBRAMANIAN 

When Eqs. (24) are introduced in Eq. (21), the solution for 0, may be 
written as 

Some Asymptotes 

For large values of T ,  Eq. (A-18) from the Appendix reads 

(A-IS) 
2 

Lt K,(T ;P)  = K I ( a ; P )  = - ( I  - P c o t h P )  
T-+ m. P’ 

For small P, Eq. (A-IS) may be approximated by 

2 P2 
K1(m;  P) z - - - - 3 15 

Hsieh (25)  analyzed dispersion in an  open channel in the absence of any 
fields using generalized dispersion theory. By symmetry, the results of 
this work for a parallel plate channel for P = 0 should agree with those 
of Hsieh. This has been verified for all the results presented in Ref. 23. 
For instance, Eq. (27) shows that as P + 0, K , ( c o ;  P) + -213 which is 
the expected result. For large P, Eq. (A-18) may be approximated by 

2 
K , ( c o ;  P) #I - P) 

Similarly, the following results may be derived 
Eq. (A-31) in the Appendix. For small P, 

1 8 
Pe2 945 K , ( a :  P, Pe) z - + - + 

and for large P, 

1 8  
Pe P K,(co; P, Pe) z 7 + -i;(p2 - 

(28) 

for K 2 ( c o :  P, Pe) from 

4P 
I35 
- (29) 

5P + 7) (30) 

Comparison with the Theory of Giddings e t  al. 

It is of interest to compare the results of this work with those of Giddings 
et al. (16) which have been derived using the nonequilibrium theory 
proposed by Giddings (14). This theory is asymptotically valid in  the 
limit of large T .  
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EXACT ANALYSIS OF FIELD-FLOW FRACTIONATION 357 

TABLE 1 

Correspondence between the Symbols of Giddings ct al. (16) and Those of This Work 
~~ 

Giddings ct al. (16) This work 

X 

VI 

H 

From basic definitions, the correspondence reported in Table 1 has been 
established between the symbols used by Giddings et al. and those of this 
work. It has been verified by actual comparison that the expressions 
derived by Giddings et al. (16) for the quantities in Table 1 in terms of 
system variables and parameters are accurate. It should be emphasized 
that the present work is more general in scope than the asymptotic non- 
equilibrium theory, and is capable of predicting system behavior, in 
principle, from time zero without recourse to  intuitive assumptions. 

R E S U L T S  AND D I S C U S S I O N  

It is seen from the analysis that the dimensionless colloid concentration 
in the channel is a function of dimensionless time 7 and the dimensionless 
axial coordinate X ;  it will also depend on the two characteristic pa- 
rameters-transverse Peclet number P, and axial Peclet number Pe. The 
dependence on Pe occurs only through an additive contribution of 1/Pe2 
to the axial dispersion coefficient whereas the dependence on P is quite 
complex. It is seen from Eq. (18) that the average concentration of the 
colloid is convected downstream in the channel with a time-dependent 
dimensionless velocity - K , ( 7 )  and spreads axially with respect to its 
center of gravity with a time-dependent dimensionless dispersion co- 
efficient K2(7) .  The behavior of these coefficients should, therefore, yield 
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358 KRISHNAMURTHY A N D  SUBRAMANIAN 

0.001 0.01 01 
T 

I .o 

FIG. 2. Plot of the dimensionless convective coefficient K , ( r )  as a function of 
dimensionless time 5 .  from Eq. (A-17) for I’ ~ 0, I ,  3, 5 ,  10, and 20. 

physical insight into the transport of colloid in the F F F  column. With 
this aim in view, Eqs. (A-171, (A-181, (A-301, and (A-31) have been used 
to obtain the data plotted in Figures 2, 3, 4, and 5 ,  respectively. The data 
were calculated using Double Precision Arithmetic on an 1BM 360/65 
(23). 

Figure 2 shows the transient approach of K ,  to its steady-state value 
for various representative values of the transverse Peclet number P. The 
range of P values runs from 0 to 20. (It may be mentioned that for the 
experiments of Kesner et al. in EFFF systems, the P values range from 
0 to 12 or so.) At time zero, the initial distribution is uniform so that the 
average velocity of the colloid is equal to the average flow velocity: 
therefore. - K , ,  which is the ratio of the average velocity of the colloid to 
the centerline velocity in the flow, is 5. For P = 0, the axial velocity of the 
colloid remains at the same value for all time. For P # 0, as time increases, 
the colloid migrates toward the boundary Y = 1 and its concentration 
distribution is weighted more and more toward the slower moving region 
near the upper boundary. Therefore, the average velocity of the colloid 
decreases monotonically with increasing time toward its asymptotic 
steady-state value. As expected, the larger the value of P, the smaller the 
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EXACT ANALYSIS OF FIELD-FLOW FRACTIONATION 359 

axial velocity of the colloid. The figure clearly shows that the relaxation 
time required for K ,  to reach its asymptotic steady-state representation 
decreases with increasing P. In  general, from physical reasons, this relaxa- 
tion time can be seen to be the larger of the following two characteristic 
times. 

(a) The time required for the colloid to migrate from one membrane 

(bj The time required for equilibration due to Brownian motion 
to the other due to the field. 

across the asymptotic distribution of the colloid in the Y coordinate. 

I n  dimensionless terms, the 7 required for (a) is given by 

while the T for (b) may be estimated roughly as 

T\ Z 1/P2 (32) 

if the characteristic width of the asymptotic distribution is taken to be 
b/P as assumed by other workers. Equation (32) represents case (b) only 
when P >> 1/2. When P is on the order of 1 or smaller, the colloid is 
practically distributed over the entire cross section of the channel, and 
hence the relaxation time for equilibration by Brownian motion would 
be given by 

T ,  1 (33) 

Comparison of Eqs. (31) to (33) shows that the relaxation time is governed 
by criterion (a) when P >> 1/2, which is the case in most FFF systems of 
practical interest. Figure 1 shows that the relaxation time for K ,  for 
P 2 I is, in  fact, on the order of magnitude of the result given in Eq. (31). 

Figure 3 shows the asymptotic K , ( c c )  plotted against P along with the 
approximations developed in Eqs. (27) and (28) for this quantity in the 
limits of small and large P. The approximations can be seen to  be quite 
good over a wide range of the parameter P. It should be noted here that 
K , ( m )  is linearly related to the retention parameter R used by Giddings 
as shown by Table 1 .  

The dimensionless axial dispersion coefficient K,(T)  is a function of the 
transverse Peclet number P and the axial Peclet number Pe in addition 
to depending on T ,  However, the dependence on Pe occurs due to  the 
additive contribution of axial molecular diffusion to axial dispersion. 
This dependence can be isolated by simply subtracting 1/Pe2 from K2 so 
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EQUATION ( A  18) 
EQUATION (27) 
EQUATION (28 )  

I I I I ~ 0.001 
0. I I I0 I00 I000 

P 

FIG. 3. Plot of the dimensionless steady-state convective coefficient K,(oo) as 
a function of Pfrom the exact result (Eq. A-18), the small P approximation 

(Eq. 27), and the large P approximation (Eq. 28). 

that the result is only a function of T and P. Figure 4 shows the behavior 
of K,  -( IjPe’) as a function of T for various values of P. The results for 
P = 0 correspond to those of Hsieh (25) in the absence of a field. In all 
cases when P # 0 (in the presence of a field), the figure shows that for 
very small times the axial dispersion coefficient is practically identical to 
that for the case P = 0 (no field). As time increases, axial dispersion 
appears to  be enhanced slightly in comparison to the case of no field and 
then decreases substantially for large time, resulting in lower asymptotic 
dispersion coefficients in the presence of a field. This behavior may be 
explained as follows. For very small T ,  the field has not had much of an 
effect; therefore, the axial dispersion coefficient is nearly the same as that 
in the absence of the field. As time increases, at intermediate times the 
colloid migrates in the presence of the field so that it is distributed more 
favorably in the large velocity gradient region near the upper boundary 
but is still present in sufficient quantities all over the cross section. This 
explains the increased dispersion compared to the case P = 0 because 
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FIG. 4. Plot of the dimensionless dispersion coefficient K,(T)  - (l /Pez) as a 
function of dimensionless time 5 from Eq. (A-30) for P = 0, 5, 10, and 20. 
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larger velocity gradients enhance dispersion. However, as time increases, 
the colloid tends to form a distribution lieauily weighted in the slower- 
moving region near the upper boundary. The reduced transverse extcnt 
of the colloid, along with the fact that the velocities are low in this region, 
contributing to very small net velocity variations across the colloid dis- 
tribution, results in a substantial reduction of axial dispersion. The figure 
shows that the asymptotic value of the dispersion coefficient for P = 0 
is more than a hundred times the value for P = 20, thus indicating a 
dramatic reduction in axial dispersion f o r  liiglily retained colloids. Figure 
4 also shows that K ,  relaxes to its asymptotic steady state at  earlier values 
of T for larger P. The relaxation times are about the same as those for 
K ,  for the same values of P and may be predicted by Eq. (31) except when 
P is very small. For convenience, the dependence of the large-time asymp- 
tote of K2 -(l/Pe2) on P is shown in Fig. 5. Also shown in this figure are 
the small and large P approximations developed in Eqs. (29) and (30). 

1 0 4  

N 

d 
1 

Y" 

__--- 10-2 __-- - 
N 

d 
1 

8 
I 

Y" 
EOUATION (A311 

---- EQUATION ( 2 9 )  
EQUATION (30) 

I I 

__--- __-- 

EOUATION (A311 
EQUATION ( 2 9 )  
EQUATION (30) 

I I 
0.001 0.01 0.1 I 

P 
10 

FIG. 5 .  Plot of the steady-state dispersion coefficient &(a) - (1/Pe2) as a func- 
tion of P from the exact result (Eq. A-31), the small P approximation (Eq. 29), 

and the large P approximation (Eq. 30). 
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0 10 20 30 40 50 
P 

FIG. 6 .  Plot of the ratio of the steady-state coefficients [ K 2 ( m )  - (l/Pe*)]/ 
lK3(m)I as a function of P. 
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364 KRISHNAMURTHY AND SUBRAMANIAN 

It was mentioned earlier that the validity of truncating Eq. (7) for 
i > 2 would be examined for this work. One way of establishing this is 
to demonstrate that K3(?) << K2(z ) .  The evaluation of the coefficient 
K3(5) involves the use of the function f 2 ( r ,  Y ) ,  which is extremely difficult 
to obtain. However, Eqs. (8) and (1 1) show that K3 and all the higher co- 
efficients are zero at time zero while K2 = 1/Pe2. Therefore, for small 
times it probably is reasonable to perform the truncation involved. In view 
of the complexity of the task, only K3(co)  was examined in this work. 
A numerical scheme was used to calculatef,(co, Y ) ,  and K3(co) was ob- 
tained by using Simpson’s rule for the integration required in Eq. (8). 
Figure 6 shows a plot of the ratio [K2(00) -(l/Pe2)]/IK3(co)l as a function 
of P. The figure shows this ratio to reach a minimum of 50 around P N 5. 
This ratio still is comfortably large to justify the truncation. However, 
this supportive evidence for the truncation should be interpreted with 
caution since the derivative d38,/aX3 can be much larger than d28,/dX2 
at very small values of T .  The best test of the truncated model for 8, 
will, of course, be comparison with suitable experimental data. 

Comparison with Asymptotic Theory 

As pointed out before, earlier mathematical modeling efforts in FFF 
have been confined to  the analysis of asymptotic large 7 behavior. That 
is, in effect, the average concentration distribution is assumed to satisfy 
the model 

t 34) 

The solution of this equation (with the same initial and boundary con- 
ditions imposed on the exact model for e,) may be written as 

Comparison with the exact solution from Eq. (26) shows 
proximations being made are 

V ( T )  5! K,(co)T 

r w  = &(W)T 

(35) 

that the ap- 

(36) 

(37) 

The percentage error made in using Eq. (36), that is, {[K,(co)t  - ~(7)]/ 
~ ( r ) }  x 100, is plotted as a function of z in Fig. 7 for various values of P. 
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FIG. 7. Plot of the percentage error in approximating K , ( T )  ds by K,(m)r as 
a function of dimensionless time T for P 7 0, 2, 5, and 10. 
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FIG. 8. Plot of the percentage error in approximating K 2 ( s )  ds by KZ(w)r  as a 
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The figure reveals that this approximation gets progressively worse as P 
increases in spite of the fact that relaxation times are smaller for larger P. 
This is clearly because of the smaller asymptotic values reached by K ,  
for larger P. 

Figure 8 shows plots of [K2(co)? - ~ ( T ) ] / ( ( T )  x 100 as a function of 
P when axial molecular diffusion is ignored. Since the axial dispersion 
coefficient, in this case, starts from a value of 0 at  time 0, increases for a 
while, and then decreases to the asymptotic value, the behavior of this 
error is more complex. I t  is important t o  note that, in general, the errors 
are much larger in approximating K 2 ( ~ )  with the asymptotic value than 
in the case of K , .  

Figure 9 shows breakthrough (or elution) curves at  X = 1 for Pe = 1000 
for two different values of P (5 and 15) calculated from the exact solution 
with the time variable K ,  and K2 and the asymptotic model which uses 
K,(oo) and K2(m) .  It is clear from the figure that even a t  values of T on 
the order of 10, which are far beyond the relaxation times involved, the 

I 2 3 4 5 6 
DIMENSIONLESS TIME, T 

7 9 

FIG. 9. Breakthrough curves from the exact solution (Eq. 26) and the asymptotic 
solution (Eq. 35) for P = 5 and 15. 
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I 

asymptotic model is quite inadequate in describing the concentration 
distribution. Krishnamurthy (23) shows that one needs to go to much 
farther axial stations ( X  = 5) in order to adequately represent the con- 
centration distributions using the asymptotic result from Eq. (35) for such 
P values. 

I 

Height Equivalent of a Theoretical Plate 

A popular concept in chromatography is the “height equivalent of a 
theoretical plate,” H. Giddings (17) has shown how this concept, while 
it has no  association with reality, can still be useful as a measure of axial 
spreading in chromatographic columns. Using his definition and the 
asymptotic results from his theory, he has obtained expressions for this 
quantity in FFF systems. H may be defined in terms of the variance of the 
solute distribution and the length of the column as 

H = 0 2 / L  (38) 

IOC 

I 

n 10 c 
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-I z 
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0.01 0. I I 10 100 

DIMENSIONLESS TIME , T 

FIG. 10. Plot of the dimensionless height equivalent of a theoretical plate H’as 
a function of dimensionless time T for P = 0,5, and 10. 
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From Eqs. (19b), (20), and (26), a dimensionless form of H can be shown 
to be given by 

H' = H/2b = (Pe/(-r) (39) 
It should be noted that this quantity is a function of time, and it  un- 

dergoes relaxation to its asymptotic value for large T. The behavior of H' 
as a function of time T is illustrated in Fig. 10 for representative values of 
the parameter P. It is clear from the figure that using asymptotic results 
for H' can lead to large errors in predicting system performance under 
certain conditions. 

Comparison of Theory with Experiments 

A substantial amount of experimental data is available on FFF systems 
in the literature in the form of retention volumes or R values, plate heights, 
and elution curves from FFF columns (2-10). Typically, these columns 
are long enough so that the time period between introduction and elution 
of the colloid is on the order of magnitude of the relaxation time for the 
system, or larger. Under these conditions, Giddings and co-workers show, 
in  the above references, that the asymptotic nonequilibrium theory 
predicts retention data quite well (in electrical FFF columns where 
deviations have been observed, they have offered possible explanations). 
The theory usually underpredicts axial dispersion data reported in the 
form of plate heights, and explanations have been presented to account 
for the observed disagreement between theory and experiment. It is clear 
that for large enough values of time, the predictions of the present theory 
would completely agree with those of the nonequilibrium theory. There- 
fore, a precise test of the present theory has to await the availability of 
calibrated elution curves in systems where the time interval between in- 
jection and elution is suitably small. In this work a comparison of the 
predictions of our theory will be made with the experimental elution 
curves from Caldwell et al. (6) and Kesner et al. (7) obtained from parallel 
membrane electrical FFF systems. For the reasons described below, these 
comparisons can only be semiquantitative in nature. The data available 
are in the form of UV-recorder responses as a function of time at the sys- 
tem exit. Calibration information is not available, but the response of the 
recorder may be assumed to  be linear in protein concentration in the 
range of concentrations involved so that a comparison can be made by 
matching the peak heights in the breakthrough curves on an individual 
basis for each protein. Also, Figs. 7 and 8 in Kesner et al. (7)  show that 
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under identical operating conditions, proteins such as albumin and 
hemoglobin arrive at quite different times at the system exit depending on 
whether y-globulin is present or not. This suggests colloidal interactions or 
variations in operating parameters that were undetectable. Hence the 
comparisons to be made here can only be indicative of trends and cannot 
be interpreted precisely. Furthermore, Kesner et al. observed that the peak 
arrival times from their experimental data matched theoretical predictions 
made from nonequilibrium theory (with the aid of literature data on the 
physical and electrical properties of the proteins) only for their runs at  
a pH = 8.0. For experiments at a pH = 4.5, they observed substantial 
deviations for which they offer some possible explanations. In any case, 
we estimated P values for  comparison at a p H  of 8.0 from literature data 
for  electrophoretic mobilities and difusivities for the various proteins com- 
piled in Kesner’s thesis (26). The resulting comparison is shown in Fig. 11 
for the separation of y-globulin and albumin. Figures 12 and 13 show com- 
parisons of theory with experiment for some more protein separations, 
this time at a pH of 4.5. The theoretical results for these comparisons were 
calculated using a P estimated from the experimental data points in the 
l / w  vs 1/E plots of Kesner et al. In all three figures the slight deviations in 
matching the peak arrival times may be attributed to: 

(a) The fact that the predictions are based on the exact theory whereas 
the P values were estimated from the I/w vs 1/E data in which the ordinate 
had been calculated using the asymptotic nonequilibrium theory. 

(b) The possible errors we made in reading the data for P off the 
graphs of Kesner et al. 

Considering the restrictions mentioned earlier, the theory makes 
reasonable predictions of the axial dispersion observed in the experiments, 
especially at small P. At larger P values the experimental dispersion is 
much larger than that predicted by theory. It is possible that this trend 
of larger deviations at larger P could be the result of the various simplify- 
ing assumptions made in developing the theory. However, one possible 
explanation could be that the observed experimental dispersion is caused 
by atiditional Taylor dispersion in the connecting tubing from the injection 
station to the channel inlet, and in the tubing from the channel exit to 
the UV-recorder. Since, for large P, axial dispersion in the FFF column 
itself is substantially reduced (by a factor of approximately 20 for P = 10 
when compared with P = 0), Taylor dispersion in the connecting tubing, 
where there is no applied field, would take on an increased importance. 
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FIG. 11. Breakthrough curves from present solution (Eq. 26) and experimental 
results of Caldwell et al. (6) for y-globulin and albumin. 

In other words, a short length of such tubing which causes very little ad- 
ditional dispersion in chromatographic systems could possibly play an 
overriding role in determining the extent of peak spreading in an FFF 
column. Of course, even with accurate data on the length and diameter 
of this tubing, it would be very difficult to make a proper estimate of its 
contribution because of the changes in geometry. One way of testing the 
conjecture made here is to compare peak spreading in the case of a run 
with a high value of P [such as the one for y-globulin in Fig. 8 of Kesner 
et al. (7)] using different sizes of connecting tubing. 
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FIG. 12. Breakthrough curves from the present solution (Eq. 26) and the experi- 
mental results of Kesner et al. (7) for albumin, hemoglobin, and y-globulin. 
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FIG. 13. Breakthrough curves from the present solution (Eq. 26) and the experi- 
mental results of Kesner et al. (7) for albumin and hemoglobin. 
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Other explanations for the large observed dispersion could be side wall 
effects, or successive disturbances which would cause the colloidal dis- 
tributions to undergo relaxations-as noted in this work, the axial disper- 
sion coefficient is usually much larger during the relaxation stage than 
in the asymptotic stage. 

Finally, it should be reemphasized that the above comparisons are not 
to be interpreted as precise tests of the theory. Such testing must await 
the availability of more quantitative experimental data on FFF systems 
in the region of time where the coefficients K ,  and K, exhibit transient 
behavior. 

CONCLUSIONS 

The unsteady transport of a colloid introduced into a fluid in time- 
dependent flow in a parallel plate channel in the presence of a transverse 
field has been analyzed using generalized dispersion theory. The present 
treatment provides a rigorous unified theoretical foundation for the 
modeling of field-flow fractionation (FFF) devices. 

The results from the theory show that the dimensionless average con- 
centration of the colloid depends on dimensionless time and axial position ; 
it also depends parametrically on the transverse Peclet number P and the 
axial Peclet number Pe. 

For large values of time, the results of the present work have been shown 
to approach those of the nonequilibrium theory of Giddings asymp- 
totically. In the case of steady laminar flow and a uniform initial distribu- 
tion, numerical results show that the errors involved in using the asymp- 
totic theory increase substantially with increasing P. An attempt has been 
made to compare the theoretical predictions with the data of Giddings 
and co-workers on electrical FFF columns. The comparisons show the 
theory to be reasonably successful in predicting observed axial dispersion 
for small P. In view of the extremely small dispersion predicted by the 
theory for FFF at large P, it is conjectured that one possible reason for the 
observed large dispersion in the experiments could be the effect of con- 
necting tubing used between the injection port and the channel inlet and 
between the channel exit and the UV-monitoring device. 

The methodology of generalized dispersion theory which has been used 
in this work is quite general, and can be used equally well to predict the 
performance of systems with other geometries such as the hollow fiber 
device of Reis and Lightfoot (12). 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
1
0
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



EXACT ANALYSIS OF FIELD-FLOW FRACTIONATION 373 

APPENDIX 

The details of the various solutions for the functionsf, and f i  and the 
results for the coefficients K ,  and K2 are presented here. 

The Functionfo(z, Y )  

By setting k = 0 in Eqs. (9), (13), and (14), and using Eq. (12), the fol- 
lowing defining equations may be obtained forfo(T, Y )  : 

ftl 

(A-4) 

(A-5) 

It may be observed that the function f,(~, Y )  is independent of the 
velocity field and, therefore, Eqs. (A-I) to (A-5) may be solved immediately 
by the method of separation of variables. The result is 

00 

. fo (T ,  Y >  = C An ~ X P  ( - A 2 T )  + n ( Y )  (A-6) 
n = o  

where 

2 P2 
An2 = u, + - 4 

P2 
N o 2  = - - 

4 

(A-7) 

(A-9) 

and the eigenfunctions &( Y )  are given by 

+,( Y )  = ePYi2 (cos CL, Y + G, sin u, Y )  (A-10) 
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It should be noted that, when n = 0, Eq. (A-10) may be conveniently 
rewritten as 

&(Y)  = epy (A-12) 

The expansion coefficients A ,  are obtained using the orthogonality pro- 
perty of the set of eigenfunctions $,. This set appears t o  be complete even 
though the Sturm-Liouville system for $,, is not proper in view of Eq. 
(A-3). 

where the weighting factor is r ( Y )  = P-".  From Eqs. (A-2) and (A-12), 

2 
j? H2( Y )  dY 

12  H,( Y>e-"$,( Y )  d~ 
j'i e-PY+nz( Y )  d Y  (A- 14) A,  = 

It may be noted that A ,  is independent of the initial distribution and is 
given by 

D 

A -A 
- sinh P (A-1 5) 

Asymptotically as z + cg, , fo(r, Y )  approaches a steady-state distribution 
given by 

(A-16) 

The Coefficient K,(z)  

For steady laminar flow, the parabolic velocity profile is given by Eq. 
(17). Using this velocity field, K,(T)  may be calculated immediately from 
Eq. (8) as 

(A-17) 1 "  
= K,(co) - A ,  exp (- An2z) C, 

n =  1 
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where 

2 
P K l ( a )  = Lt K1(?) = ? ( I  - P coth P) 

I ’m 
(A-1 8) 

and 

(A-19) i cos c[, (even n)  

sinh- sin a, (odd n) 2 ’1 
The coefficient K , ( t )  represents the negative of the dimensionless velocity 
of the solute distribution. I t  is seen from Eq. (A-17)  that K ,  depends on T 

even though the velocity,field may be steady, 

Solution for,f,(.r, Y )  and K2(?)  

Setting k = 1 in Eq. ( 9 )  gives 

This is to be solved with the conditions 

(A-23) af 1 &‘, - 1 )  = PfI((.r, - 1) 

J;;f,(?, Y )  dY = 0 (A-24) 

The solution procedure, using Duhamel’s theorem, is reported elsewhere 
(23). The final result for f l ( ‘ c ,  Y )  is 

where 
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+ P2Y2 
P 3 Y 3  

- - P3 sinh' P [ {[ 1 - ;coth P]P3Y - - 3 

- [ (f - P coth P - 1 2P cosh P + (Pz + 4) sinh P + PQ epy I> 
+ Q sinh P] (A-26) 

Q = -2P(1 + cothP)f-' (A-27) 

and 

A,(1 + K,(co)) t  - (A: sinh P(l + C:) )] exp (- A n 2 t >  

I r n  exp (-&,%) - exp [ - ( A m 2  + An2)t] + 2 4 ,  c A,, Cm 
i n =  1 Am2 
m #  1 

where C, is defined by Eq. (A-19) and 

(- 1)" (1 + CnZ) 

43, 6 din, = (1 - G,')---, + m = n  

m odd 
and n odd 
or 

m even 
and n even 

> m # n  
m odd 

and n even 
or 

m even 
and n odd 

1 
(A-29) 
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where Gn is defined by Eqs. (A-1 1). From Eqs. (8), (17), and (A-25), 

j" (1 - Y')j-,(?, Y )  dY 
1 

K'(?) = 2 - - 
Pe 2 

1 m  

(A-30) 

where 

10 cosh P 
P 

14 sinh P 
+ P2 

1 
K ~ ( c o )  = Lt Kz(r)  = 

?+ m 

+ 6 sinh P] 
2P cosh P 

sinh P sinh'P sinh P 
4 cosh' P - 2 +-- 

(A-3 1) 

SYMBOLS 

channel breadth 
expansion coefficients defined in Eq. (A-14) 
channel half-width 
local concentration 
reference concentration defined in Eq. (22) 
coefficients defined in Eq. (A-19) 
diffusivity 
constants defined by Eq. (A-29) 
coefficient functions in Eq. (9) 
coefficients defined in Eq. (A-1 1) 
dimensionless coefficients defined in Eq. (8) 
total mass of colloid released 
transverse Peclet number; P = bu/D 
axial Peclet number; Pe = buo/D 
coefficient defined in Eq. (A-27) 
coefficient functions defined in Eq. (A-28) 
time 
dimensionless flow velocity; U = u/uo 
flow velocity in the x-direction 
reference velocity; also the velocity at the centerline of the channel 
transverse velocity of a colloidal specie 
dimensionless axial coordinate, X = xD/b2uo 
defined by Eq. (19a) 
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x axial coordinate 
Y 
y 
z 

dimensionless transverse coordinate; Y = y/b 
transverse coordinate; see Fig. 1 
transverse coordinate; see Fig. 1 

Greek Letters 

a n  
6 

eigenvalues defined in Eqs. (A-8) and (A-9) 
Dirac delta function 
Kronecker delta 
defined by Eq. (20) 
defined by Eq. (l9b) 
dimensionless local concentration 
dimensionless mean concentration 
defined by Eq. (A-7) 
constant; n = 3.14159. .  . 
dimensionless time; 7 = Dt/bz 
eigenfunctions defined in Eq. (A-10) 
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Note Added in Proof: A theoretical analysis of the hollow fiber systems used in Ref. 
/ I  may be found in Ref. 27. While the present article was in press, a similar devel- 
opment was reported in Ref. 28 in the context of ultrafiltration-induced polarization 
chromatography. 
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